图书介绍

introductio to food engineering fourth edition【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

introductio to food engineering fourth edition
  • r.paul singh dennis r.heldman 著
  • 出版社: elsevier
  • ISBN:0123709008
  • 出版时间:2009
  • 标注页数:841页
  • 文件大小:83MB
  • 文件页数:864页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

introductio to food engineering fourth editionPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

CHAPTER 1 Introduction1

1.1 Dimensions1

1.2 Engineering Units2

1.2.1 Base Units2

1.2.2 Derived Units3

1.2.3 Supplementary Units4

1.3 System10

1.4 State of a System11

1.4.1 Extensive Properties12

1.4.2 Intensive Properties13

1.5 Density13

1.6 Concentration15

1.7 Moisture Content17

1.8 Temperature20

1.9 Pressure22

1.10 Enthalpy26

1.11 Equation of State and Perfect Gas Law26

1.12 Phase Diagram of Water27

1.13 Conservation of Mass29

1.13.1 Conservation of Mass for an Open System30

1.13.2 Conservation of Mass for a Closed System32

1.14 Material Balances32

1.15 Thermodynamics41

1.16 Laws of Thermodynamics42

1.16.1 First Law of Thermodynamics42

1.16.2 Second Law of Thermodynamics42

1.17 Energy43

1.18 Energy Balance45

1.19 Energy Balance for a Closed System45

1.19.1 Heat45

1.19.2 Work46

1.20 Energy Balance for an Open System55

1.20.1 Energy Balance for Steady Flow Systems56

1.21 A Total Energy Balance56

1.22 Power59

1.23 Area59

Problems60

List of Symbols62

Bibliography63

CHAPTER 2 Fluid Flow in Food Processing65

2.1 Liquid Transport Systems66

2.1.1 Pipes for Processing Plants67

2.1.2 Types of Pumps68

2.2 Properties of Liquids71

2.2.1 Terminology Used in Material Response to Stress72

2.2.2 Density72

2.2.3 Viscosity73

2.3 Handling Systems for Newtonian Liquids81

2.3.1 The Continuity Equation81

2.3.2 Reynolds Number84

2.3.3 Entrance Region and Fully Developed Flow88

2.3.4 Velocity Profile in a Liquid Flowing Under Fully Developed Flow Conditions90

2.3.5 Forces Due to Friction96

2.4 Force Balance on a Fluid Element Flowing in a Pipe—Derivation of Bernoulli Equation100

2.5 Energy Equation for Steady Flow of Fluids107

2.5.1 Pressure Energy110

2.5.2 Kinetic Energy110

2.5.3 Potential Energy112

2.5.4 Frictional Energy Loss112

2.5.5 Power Requirements of a Pump115

2.6 Pump Selection and Performance Evaluation119

2.6.1 Centrifugal Pumps119

2.6.2 Head121

2.6.3 Pump Performance Characteristics121

2.6.4 Pump Characteristic Diagram125

2.6.5 Net Positive Suction Head126

2.6.6 Selecting a Pump for a Liquid Transport System129

2.6.7 Affinity Laws135

2.7 Flow Measurement136

2.7.1 The Pitot Tube140

2.7.2 The Orifice Meter142

2.7.3 The Venturi Meter146

2.7.4 Variable-Area Meters146

2.7.5 Other Measurement Methods147

2.8 Measurement of Viscosity148

2.8.1 Capillary Tube Viscometer148

2.8.2 Rotational Viscometer150

2.8.3 Influence of Temperature on Viscosity153

2.9 Flow Characteristics of Non-Newtonian Fluids155

2.9.1 Properties of Non-Newtonian Fluids155

2.9.2 Velocity Profile of a Power Law Fluid161

2.9.3 Volumetric Flow Rate of a Power Law Fluid162

2.9.4 Average Velocity in a Power Law Fluid163

2.9.5 Friction Factor and Generalized Reynolds Number for Power Law Fluids163

2.9.6 Computation of Pumping Requirement of Non-newtonian Liquids166

2.10 Transport of solid foods169

2.10.1 Properties of Granular Materials and Powders170

2.10.2 Flow of Granular Foods175

Problems178

List of Symbols183

Bibliography185

CHAPTER 3 Energy and Controls in Food Processes187

3.1 Generation of Steam187

3.1.1 Steam Generation Systems188

3.1.2 Thermodynamics of Phase Change190

3.1.3 Steam Tables194

3.1.4 Steam Utilization200

3.2 Fuel Utilization204

3.2.1 Systems206

3.2.2 Mass and Energy Balance Analysis207

3.2.3 Burner Efficiencies209

3.3 Electric Power Utilization210

3.3.1 Electrical Terms and Units212

3.3.2 Ohm’s Law213

3.3.3 Electric Circuits214

3.3.4 Electric Motors216

3.3.5 Electrical Controls217

3.3.6 Electric Lighting218

3.4 Process Controls in Food Processing220

3.4.1 Processing Variables and Performance Indicators222

3.4.2 Input and Output Signals to Control Processes224

3.4.3 Design of a Control System224

3.5 Sensors232

3.5.1 Temperature232

3.5.2 Liquid Level in a Tank234

3.5.3 Pressure Sensors235

3.5.4 Flow Sensors236

3.5.5 Glossary of Terms Important in Data Acquisition237

3.6 Dynamic Response Characteristics of Sensors237

Problems241

List of Symbols244

Bibliography245

CHAPTER 4 Heat Transfer in Food Processing247

4.1 Systems for Heating and Cooling Food Products248

4.1.1 Plate Heat Exchanger248

4.1.2 Tubular Heat Exchanger252

4.1.3 Scraped-surface Heat Exchanger253

4.1.4 Steam-infusion Heat Exchanger255

4.1.5 Epilogue256

4.2 Thermal Properties of Foods257

4.2.1 Specific Heat257

4.2.2 Thermal Conductivity260

4.2.3 Thermal Diffusivity262

4.3 Modes of Heat Transfer264

4.3.1 Conductive Heat Transfer264

4.3.2 Convective Heat Transfer267

4.3.3 Radiation Heat Transfer269

4.4 Steady-State Heat Transfer270

4.4.1 Conductive Heat Transfer in a Rectangular Slab271

4.4.2 Conductive Heat Transfer through a Tubular Pipe274

4.4.3 Heat Conduction in Multilayered Systems277

4.4.4 Estimation of Convective Heat-Transfer Coefficient285

4.4.5 Estimation of Overall Heat-Transfer Coefficient302

4.4.6 Fouling of Heat Transfer Surfaces306

4.4.7 Design of a Tubular Heat Exchanger312

4.4.8 The Effectiveness-NTU Method for Designing Heat Exchangers320

4.4.9 Design of a Plate Heat Exchanger325

4.4.10 Importance of Surface Characteristics in Radiative Heat Transfer332

4.4.11 Radiative Heat Transfer between Two Objects334

4.5 Unsteady-State Heat Transfer337

4.5.1 Importance of External versus Internal Resistance to Heat Transfer339

4.5.2 Negligible Internal Resistance to Heat Transfer(NBi<0.1)—A Lumped System Analysis340

4.5.3 Finite Internal and Surface Resistance to Heat Transfer(0.1<NBi<40)345

4.5.4 Negligible Surface Resistance to Heat Transfer(NBi≥40)348

4.5.5 Finite Objects348

4.5.6 Procedures to Use Temperature-Time Charts350

4.5.7 Use of f h and j Factors in Predicting Temperature in Transient Heat Transfer358

4.6 Electrical Conductivity of Foods366

4.7 Ohmic Heating369

4.8 Microwave Heating371

4.8.1 Mechanisms of Microwave Heating372

4.8.2 Dielectric Properties373

4.8.3 Conversion of Microwave Energy into Heat374

4.8.4 Penetration Depth of Microwaves375

4.8.5 Microwave Oven377

4.8.6 Microwave Heating of Foods378

Problems380

List of Symbols397

Bibliography399

CHAPTER 5 Preservation Processes403

5.1 Processing Systems403

5.1.1 Pasteurization and Blanching Systems404

5.1.2 Commercial Sterilization Systems406

5.1.3 Ultra-High Pressure Systems410

5.1.4 Pulsed Electric Field Systems412

5.1.5 Alternative Preservation Systems413

5.2 Microbial Survivor Curves413

5.3 Influence of External Agents418

5.4 Thermal Death Time F422

5.5 Spoilage Probability423

5.6 General Method for Process Calculation424

5.6.1 Applications to Pasteurization426

5.6.2 Commercial Sterilization429

5.6.3 Aseptic Processing and Packaging432

5.7 Mathematical Methods440

5.7.1 Pouch Processing444

Problems447

List of Symbols450

Bibliography451

CHAPTER 6 Refrigeration455

6.1 Selection of a Refrigerant456

6.2 Components of a Refrigeration System460

6.2.1 Evaporator461

6.2.2 Compressor463

6.2.3 Condenser466

6.2.4 Expansion Valve468

6.3 Pressure-Enthalpy Charts470

6.3.1 Pressure-Enthalpy Tables474

6.3.2 Use of Computer-Aided Procedures to Determine Thermodynamic Properties of Refrigerants475

6.4 Mathematical Expressions Useful in Analysis of Vapor-Compression Refrigeration478

6.4.1 Cooling Load478

6.4.2 Compressor480

6.4.3 Condenser480

6.4.4 Evaporator481

6.4.5 Coefficient of Performance481

6.4.6 Refrigerant Flow Rate481

6.5 Use of Multistage Systems490

6.5.1 Flash Gas Removal System491

Problems495

List of Symbols498

Bibliography498

CHAPTER 7 Food Freezing501

7.1 Freezing Systems502

7.1.1 Indirect Contact Systems502

7.1.2 Direct-Contact Systems507

7.2 Frozen-Food Properties510

7.2.1 Density510

7.2.2 Thermal Conductivity511

7.2.3 Enthalpy511

7.2.4 Apparent Specific Heat513

7.2.5 Apparent Thermal Diffusivity513

7.3 FreezingTime514

7.3.1 Plank’s Equation516

7.3.2 Other Freezing-Time Prediction Methods520

7.3.3 Pham’s Method to Predict Freezing Time520

7.3.4 Prediction of Freezing Time of Finite-Shaped Objects524

7.3.5 Experimental Measurement of Freezing Time528

7.3.6 Factors Influencing Freezing Time528

7.3.7 Freezing Rate529

7.3.8 Thawing Time529

7.4 Frozen-Food Storage530

7.4.1 Quality Changes in Foods during Frozen Storage530

Problems534

List of Symbols538

Bibliography539

CHAPTER 8 Evaporation543

8.1 Boiling-Point Elevation545

8.2 Types of Evaporators547

8.2.1 Batch-Type Pan Evaporator547

8.2.2 Natural Circulation Evaporators548

8.2.3 Rising-Film Evaporator548

8.2.4 Falling-Film Evaporator549

8.2.5 Rising/Falling-Film Evaporator550

8.2.6 Forced-Circulation Evaporator551

8.2.7 Agitated Thin-Film Evaporator551

8.3 Design of a Single-Effect Evaporator554

8.4 Design of a Multiple-Effect Evaporator559

8.5 Vapor Recompression Systems565

8.5.1 Thermal Recompression565

8.5.2 Mechanical Vapor Recompression566

Problems566

List of Symbols569

Bibliography569

CHAPTER 9 Psychrometrics571

9.1 Properties of Dry Air571

9.1.1 Composition of Air571

9.1.2 Specific Volume of Dry Air572

9.1.3 Specific Heat of Dry Air572

9.1.4 Enthalpy of Dry Air572

9.1.5 Dry Bulb Temperature573

9.2 Properties of Water Vapor573

9.2.1 Specific Volume of Water Vapor573

9.2.2 Specific Heat of Water Vapor573

9.2.3 Enthalpy of Water Vapor574

9.3 Properties of Air-Vapor Mixtures574

9.3.1 Gibbs-Dalton Law574

9.3.2 Dew-Point Temperature574

9.3.3 Humidity Ratio(or Moisture Content)575

9.3.4 Relative Humidity576

9.3.5 Humid Heat of an Air-Water Vapor Mixture576

9.3.6 Specific Volume577

9.3.7 Adiabatic Saturation of Air577

9.3.8 Wet Bulb Temperature579

9.4 The Psychrometric Chart582

9.4.1.Construction of the Chart582

9.4.2 Use of Psychrometric Chart to Evaluate Complex Air-Conditioning Processes584

Problems589

List of Symbols592

Bibliography593

CHAPTER 10 Mass Transfer595

10.1 The Diffusion Process596

10.1.1 Steady-State Diffusion of Gases(and Liquids)through Solids599

10.1.2 Convective Mass Transfer600

10.1.3 Laminar Flow over a Flat Plate604

10.1.4 Turbulent Flow Past a Flat Plate608

10.1.5 Laminar Flow in a Pipe608

10.1.6 Turbulent Flow in a Pipe609

10.1.7 Mass Transfer for Flow over Spherical Objects609

10.2 Unsteady-State Mass Transfer610

10.2.1 Transient-State Diffusion611

10.2.2 Diffusion of Gases616

Problems619

List of Symbols621

Bibliography622

CHAPTER 11 Membrane Separation623

11.1 Electrodialysis Systems625

11.2 Reverse Osmosis Membrane Systems629

11.3 Membrane Performance636

11.4 Ultrafiltration Membrane Systems637

11.5 Concentration Polarization639

11.6 Types of Reverse-Osmosis and Ultrafiltration Systems645

11.6.1 Plate and Frame646

11.6.2 Tubular646

11.6.3 Spiral-Wound646

11.6.4 Hollow-Fiber649

Problems649

List of Symbols650

Bibliography651

CHAPTER 12 Dehydration653

12.1 Basic Drying Processes653

12.1.1 Water Activity654

12.1.2 Moisture Diffusion657

12.1.3 Drying-Rate Curves658

12.1.4 Heat and Mass Transfer658

12.2 Dehydration systems660

12.2.1 Tray or Cabinet Dryers660

12.2.2 Tunnel Dryers661

12.2.3 Puff-Drying662

12.2.4 Fluidized-Bed Drying663

12.2.5 Spray Drying663

12.2.6 Freeze-Drying664

12.3 Dehydration System Design665

12.3.1 Mass and Energy Balance665

12.3.2 Drying-Time Prediction670

Problems680

List of Symbols685

Bibliography686

CHAPTER 13 Supplemental Processes689

13.1 Filtration689

13.1.1 Operating Equations689

13.1.2 Mechanisms of Filtration695

13.1.3 Design of a Filtration System696

13.2 Sedimentation699

13.2.1 Sedimentation Velocities for Low-Concentration Suspensions699

13.2.2 Sedimentation in High-Concentration Suspensions702

13.3 Centrifugation705

13.3.1 Basic Equations705

13.3.2 Rate of Separation705

13.3.3. Liquid-Liquid Separation707

13.3.4 Particle-Gas Separation709

13.4 Mixing709

13.4.1 Agitation Equipment711

13.4.2 Power Requirements of Impellers714

Problems718

List of Symbols719

Bibliography720

CHAPTER 14 Extrusion Processes for Foods721

14.1 Introduction and Background721

14.2 Basic Principles of Extrusion722

14.3 Extrusion Systems729

14.3.1 Cold Extrusion730

14.3.2 Extrusion Cooking731

14.3.3 Single Screw Extruders732

14.3.4 Twin-Screw Extruders734

14.4 Extrusion System Design735

14.5 Design of More Complex Systems740

Problems741

List of Symbols742

Bibliography742

CHAPTER 15 Packaging Concepts745

15.1 Introduction745

15.2 Food Protection746

15.3 Product Containment747

15.4 Product Communication748

15.5 Product Convenience748

15.6 Mass Transfer in Packaging Materials748

15.6.1 Permeability of Packaging Material to“Fixed”Gases751

15.7 Innovations in Food Packaging754

15.7.1 Passive Packaging755

15.7.2 Active Packaging755

15.7.3 Intelligent Packaging756

15.8 Food Packaging and Product Shelf-life758

15.8.1 Scientityc Basis for Evaluating Shelf Life758

15.9 Summary766

Problems766

List of Symbols767

Bibliography768

Appendices771

A.1 SI System of Units and Conversion Factors771

A.1.1 Rules for Using SI Units771

Table A.1.1:SI Prefixes771

Table A.1.2:Useful Conversion Factors774

Table A.1.3:Conversion Factors for Pressure776

A.2 Physical Properties of Foods777

Table A.2.1:Specific Heat of Foods777

Table A.2.2:Thermal Conductivity of Selected Food Products778

Table A.2.3:Thermal Diffusivity of Some Foodstuffs780

Table A.2.4:Viscosity of Liquid Foods781

Table A.2.5:Properties of Ice as a Function of Temperature782

Table A.2.6:Approximate Heat Evolution Rates of Fresh Fruits and Vegetables When Stored at Temperatures Shown782

Table A.2.7:Enthalpy of Frozen Foods784

Table A.2.8:Composition Values of Selected Foods785

Table A.2.9:Coefficients to Estimate Food Properties786

A.3 Physical Properties of Nonfood Materials787

Table A.3.1:Physical Properties of Metals787

Table A.3.2:Physical Properties of Nonmetals788

Table A.3.3:Emissivity of Various Surfaces790

A.4 Physical Properties of Water and Air792

Table A.4.1:Physical Properties of Water at the Saturation Pressure792

Table A.4.2:Properties of Saturated Steam793

Table A.4.3:Properties of Superheated Steam795

Table A.4.4:Physical Properties of Dry Air at Atmospheric Pressure796

A.5 Psychrometric Charts797

Figure A.5.1:Psychrometric chart for high temperatures797

Figure A.5.2:Psychrometric chart for low temperatures798

A.6 Pressure-Enthalpy Data799

Figure A.6.1:Pressure-enthalpy diagram for Refigerant 12799

Table A.6.1:Properties of Saturated Liquid and Vapor R-12800

Figure A.6.2:Pressure-enthalpy diagram of superheated R-12 vapor803

Table A.6.2:Properties of Saturated Liquid and Vapor R-717(Ammonia)804

Figure A.6.3:Pressure-enthalpy diagram of superheated R-717(ammonia)vapor807

Table A.6.3:Properties of Saturated Liquid and Vapor R-134a808

Figure A.6.4:Pressure-enthalpy diagram of R-134a811

Figure A.6.5:Pressure-enthalpy diagram of R-134a(expanded scale)812

A.7 Symbols for Use in Drawing Food Engineering Process Equipment813

A.8 Miscellaneous818

Table A.8.1:Numerical Data,and Area/Volume of Objects818

Figure A.8.1:Temperature at geometric center of a sphere(expanded scale)819

Figure A.8.2:Temperature at the axis of an infinitely long cylinder(expanded scale)820

Figure A.8.3:Temperature at the midplane of an infinite slab(expanded scale)821

A.9 Dimensional Analysis822

Table A.9.1:Dimensions of selected experimental variables823

Bibliography826

Index829

Food Science and Technology:International Series839

热门推荐